Learning Hypergraph Labeling for Feature Matching

نویسندگان

  • Toufiq Parag
  • Vladimir Pavlovic
  • Ahmed M. Elgammal
چکیده

This study poses the feature correspondence problem as a hypergraph node labeling problem. Candidate feature matches and their subsets (usually of size larger than two) are considered to be the nodes and hyperedges of a hypergraph. A hypergraph labeling algorithm, which models the subset-wise interaction by an undirected graphical model, is applied to label the nodes (feature correspondences) as correct or incorrect. We describe a method to learn the cost function of this labeling algorithm from labeled examples using a graphical model training algorithm. The proposed feature matching algorithm is different from the most of the existing learning point matching methods in terms of the form of the objective function, the cost function to be learned and the optimization method applied to minimize it. The results on standard datasets demonstrate how learning over a hypergraph improves the matching performance over existing algorithms, notably one that also uses higher order information without learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Editorial for the Special Issue on Graph-based representations in pattern recognition

Graph-based representations have been used with considerable success in computer vision and pattern recognition for over 40 years for their representational power and flexibility. Indeed, such representations arise naturally in many low-level and highlevel vision tasks and are in general central to several pattern matching and analysis approaches. However, despite their large use, structural re...

متن کامل

On the Pixel Expansion of Hypergraph Access Structures in Visual Cryptography Schemes

In a visual cryptography scheme, a secret image is encoded into n shares, in the form of transparencies. The shares are then distributed to n participants. Qualified subsets of participants can recover the secret image by superimposing their transparencies, but non-qualified subsets of participants have no information about the secret image. Pixel expansion, which represents the number of subpi...

متن کامل

Adaptive Hypergraph Learning for Unsupervised Feature Selection

In this paper, we propose a new unsupervised feature selection method to jointly learn the similarity matrix and conduct both subspace learning (via learning a dynamic hypergraph) and feature selection (via a sparsity constraint). As a result, we reduce the feature dimensions using different methods (i.e., subspace learning and feature selection) from different feature spaces, and thus makes ou...

متن کامل

Hypergraph Spectra for Semi-supervised Feature Selection

In many data analysis tasks, one is often confronted with the problem of selecting features from very high dimensional data. Most existing feature selection methods focus on ranking individual features based on a utility criterion, and select the optimal feature set in a greedy manner. However, the feature combinations found in this way do not give optimal classification performance, since they...

متن کامل

A Multi-Scale Residential Areas Matching Method Using Relevance Vector Machine and Active Learning

Multi-scale object matching is the key technology for upgrading feature cascade and integrating multi-source spatial data. Considering the distinctiveness of data at different scales, the present study selects residential areas in a multi-scale database as research objects and focuses on characteristic similarities. This study adopts the method of merging with no simplification, clarifies all t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1107.2553  شماره 

صفحات  -

تاریخ انتشار 2011